Using Variants of Genetic Algorithm and Learnable Evolution Model to Solve Resource-Constrained Project Scheduling Problem

dc.contributor.authorDr. Gamal Alshorbagy
dc.contributor.authorDr. Mohamed El-dosuky
dc.date.accessioned2025-12-18T09:49:00Z
dc.date.issued2025-07
dc.description.abstractThe resource-constrained project scheduling problem (RCPSP) is a complex scheduling challenge as it is proven to be NP-hard. The Learnable Evolution Model (LEM) is a non-Darwinian evolutionary approach that speeds up convergence using machine learning instead of crossover. It classifies individuals into high-performance (H-group) and low-performance (L-group) based on fitness, learns distinguishing features, and generates new individuals through an instantiation step. To ensure diversity, LEM applies mutation as a Darwinian component, making it more efficient than traditional evolutionary methods. This paper proposes a new approach, which attempts variants of genetic algorithms and LEM, aiming to tackle issues in generating Gantt charts for big cases.
dc.identifier.urihttps://research.arabeast.edu.sa/handle/123456789/494
dc.language.isoen
dc.publisherJournal of Theoretical and Applied Information Technology
dc.titleUsing Variants of Genetic Algorithm and Learnable Evolution Model to Solve Resource-Constrained Project Scheduling Problem
dc.typeArticle

ملفات

الحزمة الرئيسية

يظهر الآن 1 - 1 من 1
جاري التحميل...
صورة مصغرة
الاسم:
library Contact.png
الحجم:
1.02 MB
تنسيق:
Portable Network Graphics

حزمة الترخيص

يظهر الآن 1 - 1 من 1
جاري التحميل...
صورة مصغرة
الاسم:
license.txt
الحجم:
1.71 KB
تنسيق:
Item-specific license agreed to upon submission
الوصف: