Hybrid Intrusion Detection Framework For Mobile Edge Computing

dc.contributor.authorDr. Mohamed El-dosuky
dc.contributor.authorDr. Sherif Kamel
dc.date.accessioned2025-12-18T10:29:23Z
dc.date.issued2025-05
dc.description.abstractThe growing use of mobile edge computing (MEC) has had a positive impact on user experience and reduced latency. However, this closeness also makes MEC environments vulnerable to a number of security risks. This research article presents an edge-based hybrid intrusion detection system for MEC and the Internet of Things (IoT). The system uses techniques like behavioral analysis, anomaly detection, and signature-based detection, ensuring real-time response and reduced bandwidth usage. The system also addresses challenges in data acquisition and cleaning due to potential threats from malicious users and noise. The model uses smoothing filters, unsupervised learning, and deep learning techniques to detect anomalies and threats, reducing bandwidth. According to the findings, securing MEC environments against changing cyber threats can be accomplished using an edge-based hybrid intrusion detection system.
dc.identifier.urihttps://research.arabeast.edu.sa/handle/123456789/505
dc.language.isoen
dc.publisherJournal of Theoretical and Applied Information Technology
dc.titleHybrid Intrusion Detection Framework For Mobile Edge Computing
dc.typeArticle

ملفات

الحزمة الرئيسية

يظهر الآن 1 - 1 من 1
جاري التحميل...
صورة مصغرة
الاسم:
library Contact.png
الحجم:
1.02 MB
تنسيق:
Portable Network Graphics

حزمة الترخيص

يظهر الآن 1 - 1 من 1
جاري التحميل...
صورة مصغرة
الاسم:
license.txt
الحجم:
1.71 KB
تنسيق:
Item-specific license agreed to upon submission
الوصف: