Optimization of Treatment Plans using Deep Reinforcement Learning with the Human-in-the-loop

dc.contributor.authorMuhammad Ahmed Al-Desouki
dc.date.accessioned2025-06-19T10:20:38Z
dc.date.issued2024-01
dc.description.abstractHuman-Centered Artificial Intelligence (HCAI) is a philosophy that focuses on designing AI systems that prioritize human wellbeing and user experiences. Medical technologies driven by AI are developing quickly to provide useful solutions for clinical practice. Treatment plan optimization is a process that aims to improve the effectiveness and efficiency of a treatment plan for a specific medical condition. Combining Deep Reinforcement Learning (DRL) with human-in-the-loop (HITL) can optimize treatment plans by combining the expertise of human clinicians with deep reinforcement learning algorithms. This paper provides two approaches for treatment plan optimization with Proximal Policy Optimization (PPO) and Deep Q Learning (DQN).
dc.identifier.urihttps://research.arabeast.edu.sa/handle/123456789/258
dc.language.isoen
dc.publisherInternational Journal of Computer Applications (IJCA)
dc.titleOptimization of Treatment Plans using Deep Reinforcement Learning with the Human-in-the-loop
dc.typeArticle

ملفات

الحزمة الرئيسية

يظهر الآن 1 - 1 من 1
جاري التحميل...
صورة مصغرة
الاسم:
للحصول صورة.png
الحجم:
1.02 MB
تنسيق:
Portable Network Graphics

حزمة الترخيص

يظهر الآن 1 - 1 من 1
جاري التحميل...
صورة مصغرة
الاسم:
license.txt
الحجم:
1.71 KB
تنسيق:
Item-specific license agreed to upon submission
الوصف: