Natural Language Processing and Natural Language Understanding Techniques for Intelligent Search

dc.contributor.authorMuhammad Ahmed Al-Desouki
dc.contributor.authorSharif Kamel Hussein
dc.date.accessioned2025-06-19T10:21:49Z
dc.date.issued2024-03
dc.description.abstractThis paper presents an intelligent text retrieval and ranking system leveraging advanced NLP and NLU techniques, including word embedding's and cosine similarity. The system incorporates an LSTM language model to generate document embedding's from preprocessed text documents, facilitating accurate document-query matching. Experimental evaluation demonstrates the system's efficacy, achieving an average accuracy of 0.75 on the test set. The use of cosine similarity further supports the system's ability to rank documents meaningfully. However, potential over fitting concerns necessitate an exploration of regularization techniques to improve generalization. The proposed intelligent system finds practical applications in search engines and recommendation systems, delivering contextually relevant content to users
dc.identifier.urihttps://research.arabeast.edu.sa/handle/123456789/259
dc.language.isoen
dc.publisherInternational Journal of Computer Applications
dc.titleNatural Language Processing and Natural Language Understanding Techniques for Intelligent Search
dc.typeArticle

ملفات

الحزمة الرئيسية

يظهر الآن 1 - 1 من 1
جاري التحميل...
صورة مصغرة
الاسم:
للحصول صورة.png
الحجم:
1.02 MB
تنسيق:
Portable Network Graphics

حزمة الترخيص

يظهر الآن 1 - 1 من 1
جاري التحميل...
صورة مصغرة
الاسم:
license.txt
الحجم:
1.71 KB
تنسيق:
Item-specific license agreed to upon submission
الوصف: